341

Views on Parallel Parsing: A preliminary survey

Anton Nijholtt

Faculteit Informatica, Universiteit Twente
P.O. Box 217, 7500 AE Enschede
The Netherlands

ABSTRACT

A preliminary survey is presented of approaches to the parsing
problem in parallel environments. The discussion includes parsing
schemes which use more than one traditional parser, schemes where
‘non-deterministic’ choices during parsing are assigned separate
processes, schemes where the number of processes depends on the
length of the sentence being parsed, and schemes where the number of
processes depends on the grammar size rather than on the input length.

1. Introduction

In the early 1970’s papers appeared in which ideas on parallel compiling and execut-
ing of programs were investigated. In these papers parallel lexical analysis, syntactic
analysis (parsing) and code generation were discussed. At that time various multi-
processor computers were introduced (CDC 6500, 7600, STAR, ILLIAC IV, etc.)
and the first attempts were made to construct compilers which used more than one
processor when compiling programs (Lincoln[1970], Ellis[1971], and Zosel[1973]).
In 1975 this activity led to a conference on Programming Languages and Compilers
for Parallel and Vector Machines (see Donegan and Katz[1975] for parsing tech-
niques for vector machines). Slowly, with the coming of new parallel architectures
and the advent of VLSI, interest increased and presently interest in parallel compil-
ing and executing is widespread. Although more slowly, a similar change of orienta-
tion occurred in the field of natural language processing. However, unlike the com-
piler construction environment with its generally accepted theories, in natural
language processing no generally advocated theory of natural language analysis and
understanding is available. Therefore it is not only the desire to exploit parallelism
for the improvement of speed but it is also the assumption that human sentence pro-
cessing is of an inherently parallel nature which makes computer linguists and
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cognitive scientists turn to parallel approaches for their problems. Hence, also in
natural language processing environments there is presently a widespread interest in
parallel processing techniques for natural langunage analysis.

Parallel parsing methods have been introduced in the areas of theoretical com-
puter science, compiler construction and natural language processing. In the area of
compiler construction these methods sometimes refer to the properties of program-
ming languages, e.g. the existence of special keywords, the frequent occurrence of
arithmetic expressions, etc. Sometimes the parsing methods that were introduced
were closely related to existing and well known serial parsing methods, such as LL-,
LR-, and precedence parsing. Parallel parsing was often looked upon as determinis-
tic parsing of sentences with more than one serial parser. However, with the mas-
sively parallel architectures that have been designed and constructed, and with the
possibility to design special-purpose chips for parsing and compiling, also the well
known methods for general context-free parsing have again been investigated in
order to see whether they allow parallel implementations. Typical results in this area
are O (n)-time parallel parsing methods based on the Earley or the Cocke-Younger-
Kasami parsing methods.

In order to study complexity results for parallel recognition and parsing of
context-free languages theoretical computer scientists have introduced parallel
machine models and special subclasses of the context-free languages (bracket
languages, input-driven languages). Methods that have been introduced in this area
aim at obtaining lower bounds for time and/or space complexity and are not neces-
sarily useful from a more practical point of view. A typical result in this area tells us
that context-free language recognition can be done in O (log2n) time using n® pro-
cessors, where n is the length of the input string.

In the area of natural language processing many kinds of approaches and
results can be distinguished. While some researchers aim at cognitive simulation,
others are satisfied with high performance language systems. The first mentioned
researchers may ultimately ask for numbers of processors and connections between
processors that approximate the number of neurons and connections between them in
the human brain (that is, an order of 10'' neurons and 10°-10* connections each).
They model human language processing with connectionist models and therefore
they are interested in massive parallelism and low degradation in the face of local
errors. In connectionist approaches to parsing and natural language analysis the
traditional methods of language analysis are often replaced by strongly interactive
distributed processing of word senses, case roles and semantic markers (see e.g.,
Cottrell and Small{1984], Waltz and Pollack[1985] and Smali[1987]). The second
group of language researchers, those interested in designing and building high per-
formance language systems, are interested in parallelism as well. For any system
which has to understand natural language sentences it is necessary to distinguish dif-
ferent levels of analysis (see e.g. Nijholt[1988], where we distinguish the morpho-
logical, the lexical, the syntactic, the semantic, the referential and the behavioral
level) and at each level a different kind of knowledge has to be invoked. Therefore
we can distinguish different tasks: the application of morphological knowledge, the
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application of lexical knowledge, etc. It is not necessarily the case that the applica-
tion of one type of knowledge is under control of the application of an other type of
knowledge. These tasks may interact and at times they can be performed simultane-
ously. Therefore processors which can work in parallel and which can communicate
with each other can be assigned to these tasks.

In this paper various approaches to the problem of parallel parsing will be sur-
veyed. We will discuss examples of parsing schemes which use more than one tradi-
tional parser, schemes where ‘non-deterministic’ choices during parsing are assigned
separate processes, schemes where the number of processes depends on the length of
the sentence being parsed, and schemes where the number of processes depends on
the grammar size rather than on the input length.

2. From One to Many Traditional Serial Parsers

Introduction

As mentioned in the introduction, many algorithms for parallel parsing have been
proposed. Concentrating on the ideas that underlie these methods, some of them will
be discussed here. For an annotated bibliography containing references to other
methods see Nijholt[1989]. Since we will frequently refer to LR-parsing a few
words will be spent on this algorithm. The class of LR-grammars is a subclass of the
class of context-free grammars. Each LR-grammar generates a deterministic
context-free languages and each deterministic context-free language can be gen-
erated by an LR-grammar. From an LR-grammar an LR-parser can be constructed.
The LR-parser consists of an LR-table and an LR-routine which consults the table to
decide the actions that have to be performed on a pushdown stack and on the input.
The pushdown stack will contain symbols denoting the state of the parser. As an
example, consider the following context-free grammar:

1.S->NPVP
2.S->SNP

3. NP — *det *n
4. PP — *prep NP
5. VP - *v NP

With the LR-construction method the LR-table of Fig. 1 will be obtained from this
grammar. It is assumed that each input string to be parsed will have an endmarker
which consists of the $-sign.

An entry in the table of the form ‘shn’ indicates the action ‘shift state n on the
stack and advance the input pointer’; entry ‘rn’ indicates the action ‘reduce the stack
using rule n’. The entry ‘acc’ indicates that the input string is accepted. The right
part of the table is used to decide the state the parser has to go after a reduce action.
In a reduce action states are popped from the stack. The number of states that are
popped is equal to the length of the right hand side of the rule that has to be used in
the reduction. With the state which becomes the topmost symbol of the stack (0—10)
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state | *det *n *y *orep $ NP PP VP S
0 sh3 2 i
1 shS acc 4

2 sh6 7

3 sh8

4 re2 re2

5 sh3 9

6 sh3 10

7 rel rel

8 re3 re3 re3

9 red red

10 res red

Fig. 1 LR-parsing table for the example grammar.

and with the nonterminal of the left hand side of the rule which is used in the reduc-
tion (S, NP, VP, or PP) the right part of the table tells the parser what state to push
next on the stack. In Fig. 2 the usual configuration of an LR-parser is shown.

HODOOERER
)

LR-
routine

LR-
table

>

[ [<[e]el-[-]

Fig. 2 LR-parser.

More than One Serial Parser

Having more than one processor, why not use two parsers? One of them can be used
to process the input from left to right, the other can be used to process the input from
right to left. Each parser can be assigned part of the input. When the parsers meet
the complete parse tree has to be constructed from the partial parse trees delivered
by the two parsers. Obviously, this idea is not new. We can find it in Tseytlin and
Yushchenko[1977] and it appears again in Loka[1984]. Let G=(N, X,P,S) be a
context-free grammar. For any string ae V* let off denote the reversal of a. Let
GR=(N, Z,P®,5) be the context-free grammar which is obtained from G by defining
PR={i. A>c® | i. A—>ae P}. Itis not difficult to see that when we start a left-to-
right top-down construction of a parse tree with respect to G at the leftmost symbol
of a string w and a bottom-up right-to-left construction of a parse tree with respect to
GF at the rightmost symbol of w then, assuming the grammar is unambiguous, the
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resulting partial parse trees can be tied together and a parse tree of w with respect to
G is obtained. If the grammar is ambiguous all partial trees have to be produced
before the correct combinations can be made. Similarly, we can start with a
bottom-up parser at the left end of the string and combine it with a top-down parser
starting from the right end of the string. Especially when grammar G allows a com-
bination of a deterministic top-down (or LL-) parser and a deterministic bottom-up
(or LR-) parser this might be a useful idea. However, in general we can not expect
that if G is an LL-grammar that G* is an LR-grammar and conversely.

Rather than having one or two parsers operating at the far left or the far right
of the input, we would like to see a number of parsers, where the number depends on
the ‘parallelism’ the input string allows, working along the length of the input string.
If there is a natural way to segment a string, then each segment can have its own
parser. Examples of this strategy are the methods described in Lincoln[1970],
Mickunas and Schell[1975], Fischer[1975], Carlisle and Friesen[1985] and Lozinskii
and Nirenburg[1986]. Here we confine ourselves to an explanation of Fischer’s
method. Fischer introduces ‘synchronous parsing machines’ (SPM) that LR-parse
part of the input string. Each of the SPM’s is a serial LR-parser. In theory the start-
ing point of each SPM may be any symbol in the input string. For practical applica-
tions one may think of starting at keywords denoting the start of a procedure, a
block, or even a statement. One obvious problem that is encountered is, when we let
a serial LR-parser start somewhere in the input string, in what state should it start?
The solution is to let each SPM carry a set of states, guaranteed to include the correct
one. In addition, for each of these states the SPM carries a pushdown stack on which
the next actions are to be performed. An outline of the parsing algorithm follows.

For convenience we assume that the LR-parser is an LR(0) parser. No look-
ahead is necessary to decide a shift or a reduce action. In the algorithm M denotes
the LR-parsing table and for any state s, R (s) denotes the set consisting of the rule
which has to be used in making a reduction in state s. By definition, R (s)=(0} if no
reduction has to be made in state s.

(1) Initialization.

Start one SPM at the far left of the input string. This SPM has only one stack
and it only contains s, the start state. Start a number of other SPM’s. Suppose
we want to start an SPM immediately to the left of some symbol a. In the LR-
parse table M we can find which states have a non-empty entry for symbol a.
For each of these states the SPM which is started has a stack containing this
state only. Hence, the SPM is started with just those states that can validly scan
the next symbol in the string.

(2) Scan the next symbol.
Let a be the symbol to be scanned. For each stack of the SPM, if state s is on
top, then
(a) if M (s, a)=s' then push s’ on the stack;
(b) if M (s, a)=0 then delete this stack from the set of stacks this SPM carries.
In the latter case the stack has been shown to be invalid. While scanning the
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next input symbols the number of stacks that an SPM carries will decrease.

(3) Reduce?
Let Q=(s;, - -,s,) be the set of top states of the stacks of the SPM under con-
sideration. Define

R@Q)= kEJQR (s).

(a) if R (Q)=(0}, then go to step (2); in this case the top states of the stacks
agree that no reduction is indicated;

() if R(Q)=(i}, i#0, and i=A —Y;, then, if the stacks of the SPM are deep
enough to pop off ty;l states and not be empty, then do reduction i;

(c) otherwise, if we have insufficient stack depth or not all top states agree on
the same reduction, we stop this SPM (for the time being) and, if possible, we
start a new SPM to the immediate right.

An SPM which has been stopped can be restarted. If an SPM is about to scan a sym-
bol already scanned by an SPM to its immediate right, then a merge of the two
SPM’s is attempted. The following two situations have to be distinguished:

o If the left SPM contains a single stack with top state s then s is the correct state
to be in and we can select from the stacks of the right SPM the stack with bot-
tom state s. Pop s from the left stack and then concatenate the two. All other
stacks can be discarded and the newly obtained SPM can continue parsing.

e If the left SPM contains more than one stack then it is stopped. It has to wait
until it is restarted by an SPM to its left. Notice that the leftmost SPM always
has one stack and it will always have sufficient stack depth. Therefore there
will always be an SPM coming from the left which can restart a waiting SPM.

In step (3c) we started a new SPM immediate to the right of the stopped SPM. What
set of states and associated stacks should it be started in? We can not, as was done
in the initialization, simply take those states which allow a scan of the next input
symbol. To the left of this new SPM reductions may have been done (or will be
done) and therefore other states should be considered in order to guarantee that the
correct state is included. Hence, if in step (3) IR(Q)!>1 then for each s in Q, if
R (s)=(0), then add s to the set of states of the new SPM and if R (s)=(i} add to the
set of states that have to be carried by the new SPM also the states that can become
topmost after a reduction using production rule i (perhaps followed by other reduc-
tions).

This concludes our explanation of Fischer’s method. For more details and
extensions of these ideas the reader is referred to Fischer[1975].

‘Solving’ Parsing Conflicts by Parallelism?

To allow more efficient parsing methods restrictions on the class of general context-
free grammars have been introduced. These restrictions have led to, among others,
the classes of LL-, LR- and precedence grammars and associated LL-, LR- and pre-
cedence parsing techniques. The LR-technique uses, as discussed in the previous
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section, an LR-parsing table which is constructed from the LR-grammar.

If the grammar from which the table is constructed is not an LR-grammar,
then the table will contain conflict entries. With a conflict entry the parser has to
choose. One decision may turn out to be wrong or both (or more) possibilities may
be correct but only one may be chosen. The entry may allow reduction of a produc-
tion rule but at the same time it may allow shifting of the next input symbol onto the
stack. A conflict entry may also allow reductions according to different production
rules. Consider the following example grammar G:

1.S 5 NP VP

2.S—>SNP

3.NP - *n

4. NP — *det *n

5.NP - NP PP

6. PP — *prep NP

7. VP 5 *v NP

The parsing table for this grammar, taken from Tomita[1985], is shown in Fig. 3.

state | *det *n *v__ *prep 3 NP PP VP S
0 sh3 sh4 2 1
1 shé acc 5
2 sh?7 shé 9 8
3 sh10
4 re3 re3 re3
5 re2 re2
6 sh3 shd 11
7 sh3 sh4 12
8 rel rel
9 re5 re5 re5
10 re4d red red
1 re6 re6shé reb 9
12 re7,sh6 re7 9

Fig.3 LR-parsing table for grammar G.

Tomita’s answer to the problem of LR-parsing of general context-free gram-
mars is ‘pseudo-parallelism’. Each time during parsing the parser encounters a mul-
tiple entry, the parsing process is split into as many processes as there are entries.
Splitting is done by replicating the stack as many times as necessary and then con-
tinue parsing with the actions of the entry. The processes are ‘synchronized’ on the
shift action. Any process that encounters a shift action waits until the other
processes also encounter a shift action. Therefore all processes look at the same
input word of the sentence.

Obviously, this LR-directed breadth-first parsing may lead to a large number
of non-interacting stacks. So it may occur that during parts of a sentence all
processes behave in exactly the same way. Both the amount of computation and the
amount of space can be reduced considerably by unifying processes by combining
their stacks into a so-called ‘graph-structured’ stack. Tomita does not suggest a
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parallel implementation of the algorithm. Rather his techniques for improving
efficiency are aimed at efficient serial processing of sentences. Nevertheless, we can
ask whether a parallel implementation might be useful. Obviously, Tomita’s method
is not a ‘parallel-designed’ algorithm. There is a master routine (the LR-parser)
which maintains a data structure (the graph-structured stack) and each word that is
read by the LR-parser is required for each process (or stack). In a parallel imple-
mentation nothing is gained when we weave a list of stacks into a graph-structured
stack. In fact, when this is done, Tomita’s method becomes closely related to
Earley's method (see section 4) and it seems more natural — although the number of
processes may become too high — to consider parallel versions of this algorithm
since it is not in advance restricted by the use of a stack. When we want to siay
close to Tomita’s ideas, then we rather think of a more straightforward parallel
implementation in which each conflict causes the creation of a new LR-parser which
receives a copy of the stack and a copy of the remaining input (if it is already avail-
able) and then continues parsing without ever communicating with the other LR-
parsers that work on the same string. On a transputer network, for example, each
transputer may act as an LR-parser. However, due to its restrictions on interconnec-
tion patterns, sending stacks and strings through the network may become a time-
consuming process. When a parser encounters a conflict the network should be
searched for a free transputer and stack and remainder of the input should be passed
through the network to this transputer. This will cause other processes to slow down
and one may expect that only a limited ‘degree of non-LR-ness’ will allow an
appropriate application of these ideas. Moreover, one may expect serious problems
when on-line parsing of the input is required.

3. Translating Grammar Rules into Process Configurations

A simple ‘object-oriented’ parallel parsing method for e-free and cycle-free
context-free grammars has been introduced by Yonezawa and Ohsawa[1988]. The
method resembles the well known Cocke-Younger-Kasami parsing method, but does
not require that the grammars are in Chomsky Normal Form (CNF). Consider again
our example grammar G:

1.S > NP VP

2.S—>SNP

3.NP 5 *n

4. NP — *det *n

5.NP - NP PP

6. PP — *prep NP

7.VP > *v NP
This set of rules will be viewed as a network of concurrently working computing
agents. Each occurrence of a (pre-)terminal or a nonterminal symbol in the grammar
rules corresponds with an agent with modest processing power and internal memory.
The agents communicate with one another by passing subtrees of possible parse
trees. The topology of the network is obtained as follows. Rule 1 yields the network
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fragment depicted in Fig. 4.
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Fig. 4 From rules to configuration.

In the figure we have three agents, one for NP, one for VP and a ‘double’ agent for S.
Suppose the NP-agent has received a subtree ¢;. It passes ¢, to the VP-agent. Sup-
pose this agent has received a subtree f,. It checks whether they can be put together
(the ‘boundary adjacency test’) and if this test succeeds it passes (f; ;) to the S-
agent. This agent constructs the parse tree (S (¢, ¢2)) and distributes the result to all
computing agents in the network which correspond with an occurrence of S in a right
hand side of a rule. The complete network for the rules of G is shown in Fig. 5. As
can be seen in the network, there is only one of these S-agents. For this agent
(S (1, t2)) plays the same role as ¢, did for the NP-agent. If the boundary adjacency
test is not successful, then the VP-agent stores the trees until it has a pair of trees
which satisfies the test.

]
NP PP @__
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Fig. 5 Computing agents for grammar G.

As an example, consider the sentence The man saw a girl with a telescope.
For this particular sentence we do not want to construct from a subtree ¢, for a tele-
scope and from a subtree ¢, for saw the girl a subtree for a telescope saw a girl,
although the rule S — NP VP permits this construction. Therefore, words to be sent
into the network are provided with tags representing positional information and dur-
ing construction of a subtree this information is inherited from its constituents. For
our example sentence the input should look as
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(0 1 the)(1 2 man)(2 3 saw)(3 4 a)(4 5 girl)(5 6 with)(6 7 a)(7 8 telescope).

Combination of tokens and trees according to the grammar rules and the positional
information can yield a subtree (3 5 (NP ((*det a)(*n girl)))) but not a subtree in
which (0 1 the) and (4 5 girl) are combined. Each word accompanied with its tags is
distributed to the agents for its (pre-)terminal(s) by a manager agent which has this
information available.

If the context-free grammar which underlies the network is ambiguous then all
possible parse trees for a given input sentence will be constructed. It is possible to
pipe-line constructed subtrees to semantic processing agents which filter the trees so
that only semantically valid subtrees are distributed to other agents. An other useful
extension is the capability to unparse a sentence when the user of a system based on
this method backspaces to previously typed words. This can be realized by letting
the agents send anti-messages that cancel the effects of earlier messages. It should
be noted that the parsing of a sentence does not have to be finished before a next sen-
tence is fed into the network. By attaching another tag to the words it becomes pos-
sible to distinguish the subtrees from one sentence from those of an other sentence.

The method as explained here has been implemented in the object-oriented
concurrent language ABCL/1. For the experiment a context-free English grammar
which gave rise to 1124 computing agents has been used. Sentences with a length
between 10 and 30 words and a parse tree height between 10 and 20 were used for
input. Parallelism was simulated by time-slicing. From this simulation it was con-
cluded that a parse tree is produced from the network in O(nxh) time, where n is the
length of the input string and A is the height of the parse tree. Obviously, simple
examples of grammars and their sentences can be given which cause an explosion in
the number of adjacency tests and also in the number of subtrees that will be stored
without ever being used. Constructs which lead to such explosions are normally not
seen in context-free descriptions of natural language. As an example, consider the
method described above for a context-free grammar with rules S —a$ and S—a
only.

There are several ways in which the number of computing agents can be
reduced. For example, instead of the three double NP-agents of Fig. 5 it is possible
to use one double NP-agent with the same function but with an increase of parse
trees that have to be constructed and distributed. The same can be done for the two
S-agents. A next step is to eliminate all double agents and give their tasks to the
agents which correspond with the rightmost symbol of a grammar rule. It is also
possible to have one computing agent for each grammar rule. In this way we obtain
the configuration of Fig. 6. It will be clear what has to be done by the different
agents.

Another configuration with a reduced number of computing agents is obtained
if we have an agent for each nonterminal symbol of the grammar. For the example
grammar we have four agents, the S-, the NP-, the VP-, and the PP-agent. If we
want we can also introduce agents for the pre-terminals or even for each word which
can occur in an input-sentence. We confine ourselves to agents for the nonterminal
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S
SPP
S VP PP
NP VP *v NP *prep NP
NP
*n NP NP

NP PP j *det *n

Fig. 6 Agents for grammar rules.

symbols and discuss their roles. In Fig. 7 we have displayed the configuration of
computing agents which will be obtained from the example grammar.

The communication between the agents of this network is as follows.
(1) The S-agent sends subtrees with root S to itself; it receives subtrees from itself,
the PP-agent, the NP-agent, and the VP-agent.

(2) The NP-agent sends subtrees with root NP to itself, the S-agent, the VP-agent
and the PP-agent; it receives subtrees from itself and from the PP-agent; more-
over, input comes from the manager agent.

(3) The VP-agent sends subtrees with root VP to the S-agent; it receives subtrees
from the NP-agent; moreover, input comes from the manager agent.

(4) The PP-agent sends subtrees with root PP to the S-agent and to the NP-agent; it
receives subtrees from the NP-agent, moreover, it receives input from the
manager agent.

[NP VP

PP

Fig. 7 Agents for nonterminal symbols.

The task of each of these nonterminal-agents is to check whether the subtrees it
receives can be put together according to the grammar rules with the nonterminal as
left hand side and according to positional information that is carried along with the
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subtrees. If possible, a tree with the nonterminal as root is constructed, otherwise the
agent checks other trees or waits until trees are available.

4. From Sentence Words to Processes

Cocke-Younger-Kasami’s Algorithm

Traditional parsing methods for context-free grammars have been investigated in

order to see whether they can be adapted to a paralle]l processing view. In Chu and

Fu[1982] parallel aspects of the tabular Cocke-Younger-Kasami algorithm have

been discussed. The input grammar should be in CNF, hence, each rule is of the

form A — BC or A — a. This normal form allows the following bottom-up parsing
method. For any string x=a,a; ' *-a, to be parsed a strictly upper-triangular

(n+1)x(n+1) recognition table T is constructed. Each table entry f; ; will contain a

subset of N (the set of nonterminal symbols) such that Ae ¢ ; if and only if

A>*a,, * - a;. String x € L(G) if and only if S € 19, when construction of the

table is completed:

(1) Compute f; ;41, as i ranges from 0 to n—1, by placing A in #; ;. exactly when
there is a production A — g;,, in P.

(2) Setd=1. Assuming ¢; ;.4 has been formed for 0<i<n—d, increase d with 1 and
compute ;, ; for 0<i<n—d and j=i+d where A is placed in ¢ ; when, for any k
such that i+1<k<j-1, there is a production A »BCe P with Be (;; and
Ce b, ivje

In this form the algorithm is usually presented (see e.g. Graham and Harrison

[1976]). Fig.8 may be helpful in understanding a parallel implementation.

01/02|03|04/05

121341415

2324125

34 (35

4,5

Flg. 8 Surictly upper-triangular CYK-table.

Notice that after step (1) the computation of the entries is done diagonal by diagonal
until entry f¢, has been completed. For each entry of a diagonal only elements of
preceding diagonals are used to compute its value. More specifically, in order to see
whether a nonterminal should be included in an element ; ; it is necessary to com-
pare 1; ; and ¢, ;, with k between i and j. The amount of storage that is required by
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this method is proportional to n2 and the number of elementary operations is propor-
tional to n®. Unlike Yonezawa and Oshawa’s algorithm where positional informa-
tion needs an explicit representation, here it is in fact available (due to the CNF of
the grammar) in the indices of the table elements.

From the recognition table we can conclude a two-dimensional configuration
of processes. For each entry ; ; of the strictly upper-triangular table there is a pro-
cess P; ; which receives table elements (i.e., sets of nonterminals) from processes
P; j-1 and P,y ;. Process P; ; transmits the table elements it receives from P; ;_; to
P; j+1 and the elements it receives from Py, ; to P;_; ;. Process P; ; transmits the
table element it has constructed to processes P;_,,; and P; ;4. Fig. 9 shows the pro-
cess structure for n=5. As soon as a table element is computed or available it is sent
to its right and upstairs neighbor. Each process should be provided with a coding of
the production rules of the grammar. Clearly, each process requires O (n) time. It is
not difficult to see that like similar algorithms suitable for VLSI-implementation, e.g.
systolic algorithms for multiplication or transitive closure computation (see Guibas
et al[1979] and many others) the required parsing time is also O (#). In Chu and
Fu[1982] a VLSI design for this algorithm is presented (see also Tan[1983]).

Py Py Py Poy Pys
Py Py Py Pis

Py P Py

Py Pss

Pis

Fig. 9 Process configuration for CYK’s algorithm.

Earley’s Algorithm

The second algorithm we discuss in this section is the well known Earley’s method.
For general context-free grammars Earley parsing takes O (n°) time. This time can
be reduced to O (n2) or O (n) for special subclasses of the general context-free gram-
mars. Many versions of Earley’s method exist. In Graham and Harrison[1976] the
following tabular version can be found. For any string x =a,a, * - - a, to be parsed
an upper-triangular (n+1)Xx(n+1) recognition table T is constructed. Each table entry
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. will contain a set of items, i.e., a set of elements of the form A —»op (a dotted
rule) where A —af is a production rule from the grammar and the dot - is a symbol
not in NUE. The computation of the table entries goes column by column. The fol-
lowing two functions will be useful. Function PRED:N—2?, where
D={A—>a-B | A->afe P}, is defined as

PRED(A)={B —0o-B | Boof e P, a=*¢ and there exist Yye V* with A=*By].
Function PREDICT:2"Y 2P is defined as
PREDICT (X)=AUXPRED(A).
€

Initially, 1,o=PREDICT((S}) and all other table entries are empty. Suppose we want
to compute the elements of column j, j>0. In order to compute ¢; ; with i #j assume
that all elements of the columns of the upper-triangular table to the left of column j
have already been computed and in column j the elements # ; for j—1<k <i+1 have
been computed.

(1) AddB—aaB-yto;if B—o-aPye 1, j-1, a=a; and f=*e.

(2) Add B—oaP+y to t; ;, if, for any k such that j-1<k<i+l, B soABYE ;s
A—>wre€ 1 ; and f=>*e.

(3) Add B—aAByto 1 ; if B—>o-APye ;;, B=>*¢ and there exists C € N such
that A=*Cand CHw €y ;.

After all elements t; ; with 0<i<j—1 of column j have been computed then it is possi-
ble to compute #; ;:

@ IﬁtXJ=[A eNI B—)a’AﬁE I,'.j,OSiSj-l]. Then lj’j=PREDICF(Xj).

Fig. 10 illustrates the four steps by showing which elements provide the information
for computing #; ; and ¢; ;. It is not difficult to see that A —>a Be t; j if and only if
there exists ye V* such that S=*a, - - - g;Ay and a=>*a;,, - - - a;. Hence, in 1o,
we can read whether the sentence was correct. The algorithm can be extended in
order to produce parse trees.t

Various parallel implementations of Earley’s algorithm have been suggested in
the literature (see e.g. Chiang and Fu[1982], Tan[1983] and Sijstermans[1986]). The
algorithms differ mainly in details on the handling of €-rules, preprocessing, the
representation of data and circuit and layout design. The main problem in a parallel
implementation of the previous algorithm is the computation of the diagonal ele-
ments /, ;, for 0<i<n. The solution is simple. Initially all elements ¢; ;, 0<i<n, are
set equal to PREDICT(N), where N is the set of nonterminal symbols. The other
entries are defined according to the steps (1), (2) and (3). As a consequence, we now
have A —»a-B e T; ; if and only if a=>*a;4; - - - a;. In spite of weakening the condi-
tions on the contents of the table entries the completed table can still be used to

+ When Earley’s algorithm was introduced it was compared with the exponential time methods in which
successively every path was followed whenever a non-deterministic choice occurred. Since in Earley’s
algorithm a *simultaneous’ following of paths can be recognized, it was sometimes considered as a parallel
implementation of the earlier depth-first algorithms (sce e.g. Lang[1971]).
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Fig. 10 Computation of f;; and t;; in Earley’s algorithm.

determine whether an input sentence was correct. Moreover, computation of the ele-
ments can be done diagonal by diagonal, similar to the CYK-algorithm.

(1) Sett; ; equal to PREDICT(N), 0<i<n.
(2) Setd=0. Assuming ; ;.4 has been formed for 0<i <n—d, increase d with 1 and
compute ¢ ; for 0<i <n—d and j=i+d according to:
(2.1) AddB—aaB-ytot; ; if B—oraPye ¢, j_1, a=a; and B=>*e.
(22) Add B—aaBy to ;, if, for any k such that j-1<k<i+l,
B —)a‘AB’Ye f"’k,A—)m' € 'k,j and ﬂ=>*€.
(2.3) Add B—>aABytoy,; if B>oaABye ; ;, B=*€ and there exists Ce N
such that A=*Cand CHwr-€ ¢ ;.
VLSI designs or process configurations which implement this algorithm in such a

way that it takes O (n) time (with O (n?) cells or processes can be found in Chiang
and Fu[1982], Tan[1983] and Sijstermans[1986] (see also Fig. 9 and its explanation).

Natural Language Applications

In the field of natural language processing the Earley method is well known. Some-
times closely related methods such as (active) chart parsing (see Winograd[1983])
are used. Because of this close relationship a parallel implementation along the lines
sketched above is possible. A similar remark holds for parsing augmented transition
networks (ATN’s). Earley’s algorithm can be modified to transition networks and
extended to ATN’s (se¢ e.g. Chou and Fu[1975]). It seems worthwhile to explore
the possibilities of parallel Earley parsing for natural language applications.
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Transformational Development of Parallel Parsing Algorithms

An interesting view on constructing correct parsing algorithms that are executable on
parallel architectures is given by Partsch[1984b]. This view is part of a more general
methodology of program development by transformations: develop a program from a
formal specification by stepwisely applying correctness-preserving transformation
rules (see e.g. Bauer and Wossner[1982]). In Partsch[1984a] this approach is
applied to the development of the serial Earley algorithm (see also Jones[1971]) and
in Partsch[1984b)] the same approach is presented for the development of a parallel
version of the Cocke-Younger-Kasami algorithm, and it is remarked that the same
development strategy can be used to obtain a parallel version of Earley’s algorithm.
Without going into details we mention that with the help of some general transfor-
mation principles a tabular version of Cocke-Younger-Kasami’s algorithm is
obtained which is well suited for execution on a vector machine. With n processors
the algorithm takes O (n2) time for context-frec grammars in Chomsky Normal
Form. If there are less than n processors a combination of parallel and sequential
computation of the table elements can be done.

§. Conclusions

A survey of some ideas in parallel parsing has been presented. No attention has been
paid to ideas aimed at improving upper bounds for the recognition and parsing of
general context-free languages. An introduction to that area can be found in Chapter
4 of Gibbons and Rytter[1988]. Neither have we been looking here at the connec-
tionist approaches in parsing and natural language processing. In an extended ver-
sion of this paper context-free parsing in connectionist networks will be discussed.
More references to papers on parallel parsing can be found in Nijholt et al[1989].
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